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Abstract By using the embedded-atom method (EAM), a series of molecular
dynamics (MD) simulations are carried out to calculate the viscosity and self-diffusion
coefficient of liquid copper from the normal to the undercooled states. The simu-
lated results are in reasonable agreement with the experimental values available above
the melting temperature that is also predicted from a solid–liquid–solid sandwich
structure. The relationship between the viscosity and the self-diffusion coefficient is
evaluated. It is found that the Stokes–Einstein and Sutherland–Einstein relations qual-
itatively describe this relationship within the simulation temperature range. However,
the predicted constant from MD simulation is close to 1/(3π), which is larger than
the constants of the Stokes–Einstein and Sutherland–Einstein relations.

Keywords Copper · Molecular simulation · Self-diffusion coefficient ·
Viscosity · Undercooled

1 Introduction

As an example of a metastable state, the undercooled liquid is far from thermodynamic
equilibrium. Transport properties, such as the viscosity and the diffusion coefficient,
of undercooled liquid metals are significant in the quantitative description of crystal
nucleation and growth in metallic melts. They also play an important role in studying
the glass transition. Therefore, transport properties of undercooled liquid metals have
been receiving extensive research interest. However, despite the considerable experi-
mental and theoretical efforts devoted to these two properties during the last several
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decades [1,2], there is very limited work in the undercooled liquid regime. The diffi-
culty of experimental efforts lies mainly in two aspects. First, the undercooled state is
hard to maintain, because the contact between the metallic melt and the container wall
will introduce heterogeneities and thus will induce immediate nucleation of liquid
metals [3]. This problem is solved to a certain extent by the development of con-
tainerless processing techniques, for example, the electromagnetic levitation (EML)
method. Second, the terrestrial determination of transport properties via the EML
method experiences large uncertainty. The turbulence inside the droplet under 1g con-
ditions affects the measurement of the viscosity and the diffusion coefficient greatly
[4]. Accurate measurement of transport properties of undercooled liquid metals may
resort to microgravity conditions [5–8]. However, space experiments are often limited
due to the cost. It is necessary to develop some predictive method which can give
reliable data for liquid metals within the undercooled regime.

Computer simulation with the molecular dynamics method is considered to be one
of the most promising methods in this aspect, since it can give information on prop-
erties that would be very difficult or even impossible to be obtained by experiments.
The embedded-atom model (EAM), originally developed by Daw and Baskes [9,10]
on the basis of Stott and Zaremba’s earlier quasi-atom concept [11] and Norskov’s
effective-medium approach [12], has been successfully applied to simulate the struc-
ture, thermophysical properties, surface, and phase transformation of solid or liquid
metals [13–15]. It has also been applied to predict transport properties of liquid metals
[16–20].

In this work, we carried out a thorough EAM-based simulation of a liquid transi-
tion metal. Besides the viscosity and the self-diffusion coefficient, some other related
properties including the density, the melting point, and the radial distribution function
were calculated. The metal we considered is liquid copper. Copper is a simple and
model pure metal, but experimental data of these two transport properties within the
undercooled regime have not yet been obtained. Brooks et al. [5] once measured the
viscosity of liquid copper using an oscillating cup viscometer, but the measurement
was limited to the normal liquid state. For the self-diffusion coefficient, only two dis-
crete values exist near the melting temperature. As to the computer simulation, the
study of the viscosity and the self-diffusion coefficient was mainly focused on several
thermodynamic states near the melting temperature, and there is no systematic investi-
gation of the temperature dependences of these two dynamic properties. For example,
in the investigations of Alemany et al. [19,20], only the viscosity and self-diffusion
coefficient of liquid copper at 1,423 K was studied with the embedded-atom method
(EAM) and with the second-moment approximation to the tight-binding method.

The self-diffusion coefficient can be easily computed from the Green-Kubo (GK) or
Einstein equations in the framework of equilibrium molecular dynamics (EMD) sim-
ulation. For the viscosity, the computation via EMD often introduces large uncertainty
since the result is quite sensitive to the selection of the time origin. Nonequilibrium
molecular dynamics (NEMD) simulation methods is applied here to verify the result
of EMD and evaluate the prediction accuracy. In normal NEMD [21], the equilibrium
viscosity is derived from the data at high shear rates. So, another NEMD technique,
the reversed non-equilibrium molecular dynamics (RNEMD) method, was proposed
by Müller-Plathe [22–24]. In normal NEMD, the cause is a velocity gradient and the
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result is the momentum flux, whereas in the RNEMD technique the momentum flux
is given and the velocity gradient is calculated. The advantage of RNEMD is that the
momentum and the energy are both conservative, the viscosity is directly computed,
and the derivation process from high shear rate as in NEMD is not required. In the
present work, the viscosity of undercooled liquid copper will be predicted from these
three molecular dynamics simulation methods.

The organization of the rest of the paper is as follows. In the next section, we
describe in detail the system studied and the details of the simulations. The simula-
tion results are analyzed and discussed in Sect. 3, and we end with some concluding
remarks in Sect. 4

2 Simulation Details

Molecular dynamics simulations are performed with a monatomic system containing
2,048–10,976 atoms under periodic boundary conditions in three coordinate directions.
The interactions among all atoms are calculated using the embedded atom method
(EAM). According to the EAM potential model, the energy of an atomic system can
be written as

Etot =
∑

i

Fi (ρi ) + 1

2

∑

i �= j

φi, j
(
ri, j

)
(1)

ρi =
∑

i �= j

f j
(
ri, j

)
(2)

where Fi is the energy for embedding atom i in an electron density ρi , φi, j is a two-
body central potential between atoms i and j , and f j (ri, j ) is the contribution of atom
j to the electron density at atom i located at a distance ri, j from atom j .

We employ the model proposed by Mishin et al. [25] in our calculations. The
EAM potential of Mishin et al. uses more fitting parameters during construction and
includes ab initio energies in the fitting database. So, it is expected to be more suitable
to describe the atomic interaction of copper.

The system is first equilibrated at 1,700 K under a constant temperature and constant
pressure condition (NPT ensemble). During simulations, the extended system method
proposed by Andersen is applied [26]. The equations of particle motion are integrated
with the velocity Verlet algorithm at a time step of 1 × 10−15 s. The system is then
cooled to the desired temperature with a cooling rate of 2×1012 K · s−1, during which
the pressure is fixed to be zero. At selected temperatures, the dynamic properties are
studied in a constant temperature and constant volume condition (NVT ensemble) or
a constant volume and constant energy condition (NVE ensemble).

The self-diffusion coefficient D is calculated from the mean-square displacement
(MSD) [27], which is given by

〈
r2(t)

〉
= 1

N

N∑

i=1

(
|ri (t) − ri (0)|2

)
(3)

123



Int J Thermophys (2008) 29:1408–1421 1411

and

D = lim
t→∞

1

6t

〈
r2(t)

〉
(4)

In order to evaluate the accuracy of the prediction, we utilize three different
techniques to calculate the viscosity. One method is to calculate the viscosity from the
autocorrelation function of the pressure tensor within the framework of equilibrium
MD (EMD). From the linear response theory of Kubo [27], the viscosity is given by

η = 1

V kbT

∫ ∞

0

〈
Pαβ(0)Pαβ(τ )

〉
dτ (5)

where V is the volume, kb is Boltzmann’s constant, T is the absolute temperature, and
Pαβ is defined by

Pαβ =
N∑

j=1

(
pα j pβ j

m j
+ β j Fjα

)
(6)

and is related to one component of the off-diagonal term of the stress tensor, σαβ ,
where αβ equals xz, xy, yz, zx , or zy.pα j and pβ j are the momenta of particle j in
the α and β directions, respectively, β j is the β component of the j th particle position
vector, and Fjα is the α component of the force on particle j .

In order to obtain reliable average values for Eq. 3, we utilize a method of overlap-
ping-time-interval correlation averages proposed by Rapaport [28]. The simulations
are run using a microcanonical ensemble (constant N , V , and E). Each simulation
contains 2,048 atoms. The results for the shear viscosity are calculated using an aver-
age of 1,000 individual correlation functions spaced by 0.1 ps. The total time for the
correlation function calculation is 4 ps. For each autocorrelation function calculated,
the simulations last approximately 100 ps. A total of three to four autocorrelation
functions are subsequently averaged to obtain the presented values. The estimated
uncertainties in the shear viscosity data are less than 12 %.

The second method is to calculate the viscosity from the direct response to exter-
nal driving in nonequilibrium MD (NEMD) [21]. The simulated system contains
4,000 atoms. The periodic boundary conditions are applied to the x-y plane. To produce
a constant Couette flow in the z direction, the upper cell bordering the fundamental
cell being considered moves with a relative velocity of Vx , and the lower cell moves
with a relative velocity of Vx in the opposite direction. The shear rate γ = dVx/dz
has a constant value. The shear viscosity η is given by the relation of the stress tensor
Pxz and the shear rateγ as follows:

η = −Pxz/γ (7)

During the simulations, large shear rates ranging from 0.3 to 1.0 in reduced units are
used, and the Newtonian shear viscosity is recovered by extrapolating the calculated
shear rate of the non-Newtonian viscosity to zero. Since the applied shear rate injects
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energy into the system, an additional thermostat is used to conserve the total energy
as well as the total linear momentum. Details on this thermostat, the NEMD method,
and algorithm used in this paper can be found in Ref. [28].

The third method is the so-called reversed nonequilibrium MD (RNEMD) approach
proposed by Müller and Plathe [22–24]. During simulations of an 8 × 8 × 16
(4,096 atoms) system, periodic boundary conditions are applied in the three coor-
dinate directions. The box is subdivided into 20 slabs, the index of which increases
from z = −Lz/2 to z = Lz/2 with Lz the box length in the z direction. In slab 1,
the atom has the largest momentum component in the −x direction. Likewise, in slab
11, the atom with the largest momentum component in the +x direction is found.
Then the momenta of these two atoms are exchanged. After checking that the system
is in the linear response regime, we exchange the momentum every 15 time steps.
After a periodic momentum swap of about 3 × 105 time steps at desired temperatures,
the system converges toward a steady state. The velocity gradient in the xdirection
is calculated from the average x-velocity in each slab. In the analysis of the velocity
profile, we disregard the two slabs in which the momentum exchange takes place. The
momentum flux jz(px ) is precisely given as

jz(px ) =
∑

exch (px,11 − px,1)

2t Lx L y
, (8)

where t is the simulation time, px,1 and px,11 are the two x components of the
exchanged momenta in the slabs 1 and 11, respectively, and Lx and L y are the lengths
of the simulation box in the x and y directions. From the momentum flux and the
measured velocity gradient, the shear viscosity can be obtained as

η = − jz(px )

∂vx/∂z
(9)

During simulations, for maintaining a constant temperature, the system is coupled
weakly to a temperature bath at a frequency of once per 0.1 ps.

The error bar of the predicted shear viscosity in the RNEMD simulation can be
given by [24]

�η

η
≤ �J

J
+ �G

G
(10)

where G is the slope of the linear velocity profile determined with a least-squares
fit, and �G is the error bar from this fit. According to Eq. 8, flux J is proportional
to the exchanged momentum. Once the system is in the steady state, the cumulative
exchanged momentum varies linearly with the simulation time. We determine the slope
and its error bar by a least-squares fit. The error bar permits us to estimate �J . In the
present work, the uncertainty of the shear viscosity is estimated to be about 2.0 %.

Besides the transport properties, we calculate some other related properties such as
the melting temperature and the density. The former is indispensable to judge whether
the liquid is in the normal regime or in the undercooled regime.
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The density can be easily calculated from the mass and the box lengths of the system
in a constant temperature and constant pressure (NPT) simulation. The equilibrium
melting temperature, Tm, is estimated by a MD simulation of a metastable crystal–
liquid sandwich structure and by studying the growth direction of the layers as a
function of temperature [29–32]. During the simulations, a 6 × 6 × 18 (2,592 atoms)
crystal–liquid–crystal sandwich structure is used and the system along the z axis is
divided into 12 layers. The first and the last three layers hold 1,296 solid atoms at
300 K. The intermediate six layers hold the 1,296 liquid atoms at 2,000 K. Then the
whole system is allowed to develop at a desired temperature. Tm is evaluated from the
change of the growth direction of the computer modeled metastable structure. Above
Tm, the system will ultimately turn into a homogeneous liquid, whereas below Tm, the
whole system will become a solid phase.

3 Results and Discussions

3.1 Melting Temperature and Density

Figure 1 presents the simulated internal energy E in the homogeneous state when
starting at a metastable computer modeled crystal–liquid–crystal sandwich structure.
There exists a discontinuity in the E–T curve at T = (1, 322 ± 1)K, which corre-
sponds to the melting temperature, Tm. The simulated melting temperature agrees well
with the experimental value of 1,356 K [33], with a deviation of −2.4 %. According
to the melting temperature, the simulated undercooling is up to 422 K. The maximum
superheating is 378 K.

Fig. 1 Calculated sandwich structure internal energy of copper at the end state versus temperature

123



1414 Int J Thermophys (2008) 29:1408–1421

800 1000 1200 1400 1600 1800

7.6

7.8

8.0

8.2  Simulated data
 Experimental data[32]

 , 
g·

cm
-3

T, K

Fig. 2 Density of liquid copper versus temperature. Solid line is the linear fit to the simulated results as
Eq. 11, and dash line gives the experimental results as Eq. 12

The simulated density as a function of temperature is illustrated in Fig. 2. A linear
regression is given as

ρ = 7.89 − 7.32 × 10−4(T − Tm,Simu) g · cm−3 (11)

where Tm,Simu is the simulated melting point and T is the absolute temperature. This is
in good agreement with the experimental results given by Brillo and Egry [34], which
are denoted by a dashed line in Fig. 2 and represented by

ρ = 7.90 − 7.65 × 10−4(T − Tm,Exp) g · cm−3 (12)

where Tm,Exp is the melting point in experiments. The difference between the simu-
lated and experimental values of density is less than 0.56 %.

3.2 Viscosity

During the NEMD calculations, the accuracy of the predicted viscosity depends to a
great extent on the function used for extrapolating the shear viscosity to zero shear
rate. In this work, we find that the viscosity shear-rate dependence of liquid copper can
be well represented by a power function in the entire simulation temperature range:

η = η0 + A1γ
1
2 (13)

where η is the shear viscosity, γ is the shear rate, and A1, and η0 are the two fitting
parameters.
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Fig. 3 Viscosity of liquid copper versus the shear rate (reduced units are used, σ = 2.556 Å, ε = 1.602 ×
10−19 J, and m = 1.055 × 10−25 kg)

As an example, the relationship between the shear viscosity of liquid copper and
the shear rate at 1,600 K is presented in Fig. 3. The fitting result of the shear viscosity
at 1,600 K is given by

η = 2.92789 − 1.38156γ
1
2 mPa · s (14)

with γ = 0, the equilibrium shear viscosity of liquid copper at 1,600 K is extrapolated
as 2.92789 mPa · s. Similarly, the equilibrium shear viscosities at different tempera-
tures can be obtained.

Figure 4 illustrates the x-component velocity profiles in the RNEMD simulations.
For clarity, only velocity profiles of five temperatures are presented in this figure. Due
to the periodic boundary condition, the velocity profile is antisymmetric as to slab
11, which corresponds to the minimum of the velocity profile at a given temperature.
Obviously, the velocity profile from slab 2 to slab 10 is approximately linear, and a
linear regression only brings about an uncertainty less than 0.9 %. Based on the mea-
sured velocity gradient and the imposed momentum flux, the shear viscosity of liquid
copper at a desired temperature can be obtained according to Eq. 9.

In Fig. 5, we report our results as well as the experimental values determined by
Egry et al. above the melting temperature [5]. The viscosities calculated from NEMD,
RNEMD, and EMD simulations are plotted as open squares, solid circles, and open
circles, respectively. The solid triangles denote the experimental viscosity of Egry et
al. Noteworthily, the results of EMD, NEMD, and RNEMD methods are mutually
consistent. Moreover, the predicted shear viscosities from these three techniques are
in reasonable agreements with experimental data above the melting point, and the
differences are about 11 %, 14 %, and 15 %, respectively, for NEMD, RNEMD, and
EMD methods at 1,400 K. The viscosity of liquid copper seems to follow the Arrhenius
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Fig. 4 Velocity profiles in the simulation cell (reduced units are used)

Fig. 5 Viscosity of liquid copper at different temperatures

relationship in the simulation temperature range:

η = η0exp

(
Ea

kbT

)
(15)

where η0 is the prefactor, kb is Boltzmann’s constant, and Ea is the activation energy.
In Table 1, we present the values for the activation energy as well as the prefactors for
each method.
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Table 1 Viscosity parameters
assuming Arrhenius behavior for
each method

Methods η0(mPa · s) Ea/kb(K)

NEMD 0.5765 2, 591.23

RNEMD 0.5416 2, 624.62

EMD 0.5566 2, 570.48

Experimental 0.5259 2, 867.87

It is interesting to evaluate a frequently used empirical expression, which estimates
the viscosity from the radial distribution function, g(r) [35]:

η ≈ 4.5ν0 P(T )mn2
0g(rm)r5

m

(
1 − r0/rm

)
(16)

where m is the atomic mass, n0 is the atomic density, ν0 is a characteristic constant,
rm and r0 are the positions of the first peak and its left-hand edge in the g(r) curve,
respectively, and P(T ) is given by

P(T ) = 1 −
∞∫

ϕ

(2π)−1/2exp

(
−ϕ2

2

)
dϕ (17)

with

φ =
√

3

2

(
Tb − T

T

)
(18)

For copper, ν0 and Tb are 3.54 × 1012s−1 and 2,903 K [35], respectively.
The simulated RDFs at different temperatures are shown in Fig. 6. The reasonability

of simulated results can be illustrated from the good agreement with the experimental
RDF at 1,783 K [36], which is denoted by open circles. The RDFs presented here are
calculated for 2,000 different configurations of 4,096 atoms.

The calculated viscosity from Eq. 16 is represented by open triangles in Fig. 5. Gen-
erally speaking, the empirical expression predicts similar temperature dependence and
comparable values of viscosity with the MD simulations. However, it should be noted
that at temperatures below 1,200 K the temperature dependence of viscosity empir-
ically estimated deviates from the simulated one. This deviation may be ascribed to
the short cutoff distance in the EAM model. From the simulated RDFs at different
temperatures, we can see that the lower the temperature, the more intense is the cor-
relation of atoms at longer distances. Therefore, the approximation can be improved
if a larger cutoff distance is considered.
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Fig. 6 Radial distribution functions of liquid copper at different temperatures. Open circles denote the
experimental results at 1,783 K

3.3 Self-Diffusion Coefficient

The mean square displacements (MSDs) of liquid copper at different temperatures
are shown in Fig. 7. In these curves, two time regimes can be distinguished. For short
times, the motion of the particle is ballistic, and the MSD is proportional to t2. For long
times, the motion is diffusive and the MSD is proportional to t . From the first derivative
of the MSD in the diffusive regime, the self-diffusion coefficient is obtained according

0.1 1 10 100
1E-3

0.01

0.1

1

10

900 K

M
S

D
, 

2

t, (m/ )1/2

1700 K

Fig. 7 MSDs of liquid copper at different temperatures (reduced units are used)
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Fig. 8 Self-diffusion coefficient of liquid copper versus temperature. Solid line describes the Arrhenius fit
to the simulated results

to Eq. 4. The simulated self-diffusion coefficients in this work and those from other
studies are presented in Fig. 8. The solid circles denote the simulated results in the
present work, and the open ones are the experimentally determined values. The open
squares and the solid triangle represent the simulated values from the EAM potentials
by Chen et al. [37] and from Mei and Davenport [38], respectively. The solid star is
the predicted self-diffusion coefficient of Iida from an empirical expression [35], and
the open star denotes the simulated result for liquid copper by Alemany et al. [19]
at 1,423 K. Comparisons show that at 1,357 K the simulated data in the present work
are very close to the predicted values from the EAM models by Chen and Mei, the
difference being −1.2 % and −4.9 %, respectively. The results in this work agree also
well with the predicted values of Iida with a deviation of about 2 %. Meanwhile, our
computation results are in reasonable agreement with the experimental data, and the
deviation is about −12 %. An Arrhenius best fit shows that the self-diffusion coefficient
is related to the temperature by

D = 7.3828 × 10−8 · exp

(
−4, 200.51

T

)
m2 · s−1, (19)

and the result is plotted as the solid line in Fig. 8.
On the basis of the simulated viscosity and the self-diffusion coefficient, we investi-

gate the relationship between the two transport properties. The value of DRη/(kbT ) is
evaluated, where the atomic radius R is calculated from the predicted atomic density.
As shown in Fig. 9, DRη/(kbT ) of liquid copper changes little with the variation of
temperature, which is in the range of 0.092–0.099. This value is very close to 1/(3π),
and is remarkably larger than the predicted constant 1/(6π) of the Stokes–Einstein
expression [39] and 1/(4π) of the Sutherland–Einstein expression [40].
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Fig. 9 Calculated DRη/(kbT ) for liquid copper at different temperatures

4 Conclusions

With molecular dynamics simulation and the EAM potential model, the transport
properties of liquid copper are calculated. The melting temperature of copper is eval-
uated from a crystal–liquid sandwich structure. The self-diffusion coefficient is pre-
dicted from EMD simulations, and the viscosity is computed from three different
simulation techniques, namely, EMD, NEMD, and RNEMD simulations. The results
from the three simulation methods are mutually consistent. In the simulation, the tem-
perature dependences of both the viscosity and the self-diffusion coefficient can be
well represented by the Arrhenius relation. The simulated transport properties are in
good agreement with the available experimental data. The Stokes–Einstein or Suth-
erland–Einstein relation could be applied to describe the relationship between the
viscosity and the self-diffusion coefficient. However, the constant is recommended to
be 1/(3π) instead of 1/(6π) or 1/(4π) for liquid copper.
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